
Starting to Slither:
Python for Beginners

by

Eric Manuel N. Pareja
Philippine Linux Users’ Group

April 26, 2003
Asia Pacific College

 Objectives

 Introduce the Python Programming Language

 Teach the Basics of Python

 Demonstrate Some Python Applications

 Outline

 Introduction
 What is Python / History of Python
 Why Python / Features
 Starting to Slither
 Variables and Arithmetic Expressions
 Conditionals
 File I/O
 Strings
 Lists and Tuples
 Loops
 Dictionaries
 Functions
 Classes
 Exceptions
 Modules
 Demonstration of some Python programs
 Books and Websites

 Introduction: What is Python?

 python, (Gr. Myth. An enormous serpent that lurked in the cave of Mount Parnassus and was slain by
Apollo) 1. any of a genus of large, non-poisonous snakes of Asia, Africa and Australia that suffocate their
prey to death 2. popularly, any large snake that crushes its prey 3. totally awesome, bitchin’ language that

will someday crush the $’s out of certain other so-called VHLL’s ;-)

 Python is an interpreted, interactive,
object-oriented programming

language.

 It is often compared to Tcl, Perl,
 Scheme or Java.

 Introduction: History of Python

 Written by Guido van Rossum
 Started work in 1990
 First release in 1991
 Minor number release every 6 months
 Named after Monty Python
 Current version is 2.3a2 (February 19, 2003)

 Introduction: Why Python

 Simple yet powerful syntax
 Multi-platform
 UNIX, Windows, Mac, BeOS, VMS, Amiga, OS/2, PalmOS, Java
 Some modules are platform bound
 Speed of development
 Wealth of standard and contributed modules
 Strong community involvement, 10th annual python conference

 Introduction: Features of Python

 Extensible in Python, C and other programming languages
 Object Oriented without being Object-centric
 White-space is significant
 Great for rapid prototyping
 Good for scripting
 Great for readability
 Restricted execution environment
 Exceptions

 Perl is executable line noise. Python is executable pseudo-code.

 Variables and Arithmetic Expressions

 Python is a dynamically typed language in which names can
represent values of different types during the execution of
the program.

 The assignment operator = associates a name and a value.
Names or identifiers must begin with a non-numeric
character or underscore but may contain both numeric and
non-numeric characters.

 principal = 1000

 Different from C where a name represents a fixed size and location in
memory into which results are placed.

 Variables and Arithmetic Expressions

 Example:

 principal = 1000 # initial amount
 rate = 0.05 # interest rate
 numyears = 5 # number of years
 year = 1
 while year <= numyears:
 principal = principal*(1+rate)
 print year, principal
 year += 1

 Conditionals

 The if and else statements can perform simple tests.

 Example:

 #Compute the maximum (z) of a and b
 if a < b:
 z = b
 else:
 z = a

 The bodies of if and else clauses are denoted by indentation. The else clause
is optional.

 Conditionals

 To create an empty clause, use the pass statement.

 Example:

 if a < 0:
 pass # Do nothing
 else:
 z = a

 Conditionals

 Boolean expressions can be formed using the or, and, and
not keywords

 Example:

 if b >= a and b <= c:
 print "b is between a and c"
 if not (b < a or b > c):
 print "b is still between a and c"

 Conditionals

 To handle multiple-test cases, use the elif statement.

 Example:
 if a == ’+’:
 op = PLUS
 elif a == ’-’:
 op = MINUS
 elif a == ’*’:
 op = MULTIPLY
 else:
 raise RuntimeError, "Unknown operator"

 File Input and Output

 The following program opens a file and reads its contents
line by line.

 f = open("foo.txt") # Returns a file object
 line = f.readline() # Invokes the readline() method on file
 while line:
 print line, # trailin ’,’ omits newline character
 f.close()

 File Input and Output

 Similarly, you can use the write() method

 f = open("out", "w") # Open a file for writing
 while year <= numyears:
 principal = principal*(1+rate)
 f.write("%3d %0.2f\n" % (year, principal)) # File output
 f.close()

 Strings

 To create string literals, enclose them in single, double or
triple quotes.

 Examples:

 a = "Hello World"
 b = ’Python is groovy’
 c = """Sino si Pepito Biglangliko?"""

 The same type of quote used to start the string must be used to terminate it.

 Strings

 Triple-quoted strings capture -all- the text that appears
before the terminating triple quote. Single and double quoted
strings must be on one logical line.

 Triple-quoted strings are useful when contents of the string
span multiple lines of text.

 Example:
 print ’’’Content-type: text/html

 <h1>Hello World</h1>
 Click here.
 ’’’

 Strings

 Strings are sequences of characters indexed by integers
starting at zero. To extract a single character, use the
indexing operator s[i] like this:

 Example:
 a = "Hello World"
 b = a[4] % b = ’o’

 Strings

 To extract a substring, use the slicing operator string[i:j].
 This extracts all elements from string whose index k is in the
range i <= k < j.

 If either index is omitted, the beginning or end of the string is
assumed, respectively.

 Examples:

 c = a[0:6] # c = "Hello"
 d = a[7:] # d = "World"
 e = a[3:8] # e = "lo Wo"

 Strings

 Strings are concatenated with the plus (+) operator:

 Example:

 g = a + " This is a test"

 Strings

 Other datatypes can be converted into a string using either
str() or repr() functions or backquotes (‘), which are a
shortcut notation for repr().

 Example:

 s = "The value of x is " + str(x)
 s = "The value of y is " + repr(y)
 s = "The value of y is " + ‘y‘

 Lists and Tuples

 Just as strings are sequences of characters, lists and tuples
are sequences of arbitrary objects. You can create a list as
follows.

 Example:

 names = ["Eric", "Trixie", "Coley"]

 Lists and Tuples

 Lists are indexed by integers starting with zero. Use the
indexing operator to access and modify individual members
of the list.

 Example:

 a = names[2] # Returns the third element of the list "Coley"
 names[0] = "pusakat" # Changes the first element of the list to "pusakat"

 Lists and Tuples

 To append new members to a list, use the append() method.

 Example:

 names.append("Khamir")

 Lists and Tuples

 You can extract or reassign a portion of a list by using the
slicing operator.

 Example:

 b = names[0:2] # Returns ["pusakat", "Trixie"]
 c = names[2:] # Returns ["Coley", "Khamir"]
 names[1] = ’Eric’ # Replace the 2nd item in names with ’Eric’
 names[0:2] = [’Eric’, ’Trixie’, ’Coley’] # Replace the first two elements
 # of the list with the sublist on the right

 Lists and Tuples

 Use the plus (+) operator to concatenate lists.

 Example:

 a = [1,2,3] + [4,5] # Result [1,2,3,4,5]

 Lists and Tuples

 Lists can contain any kind of Python object including other
lists.

 Example:

 a = [1, "Dave", 3.14, ["Mark", 7, 9, [100, 101]], 10]

 Nested lists are accessed as follows:

 a[1] # returns "Dave"
 a[3][2] # returns 9
 a[3][3][1] # Returns 101

 Lists and Tuples

 Some advanced features of lists

 Example:
 import string # load the string module
 import sys # load the sys module
 f = open(sys.argv[1]) # filename on the command line
 svalues = f.readlines() # read all lines into a list
 f.close()

 fvalues = map(string.atof, svalues)

 print "The minimum value is ", min(fvalues)
 print "The maximum value is ", max(fvalues)

 Lists and Tuples

 Closely related to lists is the tuple datatype. You create
tuples by enclosing a group of values in parentheses or with
a comma-separated list.

 Examples:
 a = (1,4,5,-9,10)
 b = (7,) # this is a singleton
 person = (first_name, last_name, phone)
 person = first_name, last_name, phone # same as previous line

 Tuples support most of the same functions as a list except that you cannot
 modify the contents of a tuple after creation. (immutable object)

 Loops

 The simple loop shown earlier used the while statement. The
other looping construct is the for statement, which iterates
over the members of a sequence, such as a string, list or
tuple.

 Example:
 for i in range(1, 10):
 print "2 to the %d power is %d" % (i, 2**i)

 The range(i, j) function constructs a list of integers with values from i to j-1. If the starting value is omitted,
it’s assumed to be zero. An optional stride or step size can be given as a third argument.

 Loops

 The range(i, j) function constructs a list of integers with
values from i to j-1. If the starting value is omitted, it’s
assumed to be zero. An optional stride or step size can be
given as a third argument.

 Examples:
 a = range(5) # a = [0,1,2,3,4]
 b = range(1,8) # b = [1,2,3,4,5,6,7]
 c = range(0,14,3) # c = [0,3,6,9,12]
 d = range(8,1,-1) # d = [8,7,6,5,4,3,2]

 Loops

 The for statement can iterate over any sequence type and
isn’t limited to sequences of integers.

 Example:
 a = "Hello World"
 # Print out the characters in a
 for c in a:
 print c

 b = ["Eric", "Trixie", "Coley", "Khamir"]
 # Print out the members of a list
 for name in b:
 print name

 Loops

 range() works by constructing a list and populating it with
values according to the starting, ending and stride values.
For large ranges, this process is expensive in terms of both
memory and runtime performance. To avoid this, you can
use the xrange() function.

 Example:
 for i in xrange(1,10):
 print "2 to the %d power is %d" % (i, 2**i)

 a = xrange(100000000) # a = [0, ..., 100000000]
 b = xrange(0,100000,5) # b = [0,5,10,...,100000]

 Instead of creating a sequence populated with values, the sequence returned
by xrange() computes its values from the starting, ending and stride values
everytime it’s accessed.

 Dictionaries

 A dictionary is an associative array or hash table that
contains objects indexed by keys.

 You create a dictionary by enclosing values in curly braces ({
}) like this:

 a = {
 "username" : "xenos",
 "home" : "/home/xenos",
 "uid" : 500
 }

 Dictionaries

 To access members of a dictionary, use the key-indexing
operator.

 Example:

 u = a["username"] # Returns "xenos"
 d = a["home"] # Returns "/home/xenos"

 Dictionaries

 To insert or modify objects, you assign a value to a
key-indexed name.

 Examples:
 a["username"] = "trixie"
 a["home"] = "/home/trixie"
 a["shell"] = "/usr/bin/tcsh"

 Dictionaries

 Although strings are the most common type of key, you can
use many other Python objects, including numbers and
tuples. Some objects, including lists and dictionaries cannot
be used as keys, because their contents are allowed to
change.

 Dictionaries

 Dictionary membership is tested with the has_key() method.

 Example:
 if a.has_key("username"):
 username = a["username"]
 else:
 username = "unknown user"

 This can also be performed more compactly this way.

 username = a.get("username", "unknown user")

 Dictionaries

 To obtain a list of dictionary keys, use the keys() method.

 Example:

 k = a.keys() # k = ["username", "home", "uid", "shell"]

 Use the del statement to remove an element of a dictionary.

 del a["username"]

 Functions

 You use the def statement to create a function.

 Example:

 def remainder(a,b):
 q = a/b
 r = a - q*b
 return r

 To invoke the function, simply use the name of the function followed by its
arguments enclosed in parenthesis.

 Example:
 result = remainder(37,15)

 Functions

 You can use a tuple to return multiple values from a function.

 Example:

 def divide(a,b):
 q = a/b # If a and b are integers, q is an integer.
 r = a - q*b
 return (q,r)

 When returning multiple values in a tuple, it’s often useful to invoke the
function as follows:

 quotient, remainder = divide(1456,33)

 Functions

 To assign a default value to a parameter, use assignment in
the def statement.

 Example:

 def connect(hostname, port, timeout=300):

 When default values are given in a function definition, they can be omitted
from subsequent function calls.

 Example:
 connect(’www.python.org’, 80)

 You can also invoke functions by using keyword arguments and supplying
the arguments in arbitrary order.

 Example:
 connect(port=80,hostname="www.python.org")

 Functions

 When variables are created or assigned inside a function,
their scope is local. To modify the value of a global variable
from inside a function, use the global statement.

 Example:

 a = 4.5 ...
 def foo():
 global a
 a = 8.8 # Changes the global variable a

 Classes

 Exceptions

 Modules

 Books and Websites

 http://www.python.org
 http://www.diveintopython.org
 http://www.vex.net
 http://www.pygame.org
 http://www.upm.edu.ph/~xenos

 "Programming Python" by Mark Lutz
 "Learning Python"
 "Core Python Programming" by Wesley Chun
 "Teach Yourself Python in 24 Hours"
 "Python Essential Reference" by David M. Beazley

